Superconformal Chern-Simons Theory

نویسندگان

  • Toshiaki Fujimori
  • Koh Iwasaki
  • Yoshishige Kobayashi
  • Shin Sasaki
چکیده

We study a class of classical solutions of three-dimensional N = 6 superconformal Chern-Simons theory coupled with U(N)×U(N) bi-fundamental matter fields. Especially, time evolutions of fuzzy spheres are discussed for both massless and massive cases. For the massive case, there are a variety of solutions having different behaviors according to the value of the mass. In addition to the time-dependent solutions, we analyze nonBPS static solutions which represent parallel M5/M5 or M5/anti-M5-branes suspended by multiple M2-branes. These solutions are similar to the fundamental strings connecting two parallel (anti) Dp-branes in perturbative string theory. A moving M5-brane and domain wall solutions with constant velocity that are obtained by the Lorentz boost of the known BPS solutions are briefly addressed. fujimori(at)th.phys.titech.ac.jp iwasaki(at)th.phys.titech.ac.jp yosh(at)th.phys.titech.ac.jp shin.sasaki(at)helsinki.fi

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remark About Scaling Limit of ABJ Theory

We generalize the suggestion presented in arXiv:0806.3498 that the 3d N = 8 superconformal SU(N) Chern-Simons-matter theory of Lorentzian Bagger-LambertGustavson type (L-BLG) can be obtained through the scaling limit from N = 6 superconformal U(N) × U(N) Chern-Simons-matter theory of Aharony, Bergman, Jafferis and Maldacena (ABJM) to the case when we study the scaling limit of N = 6 superconfor...

متن کامل

The Complete Superconformal Index for N = 6 Chern - Simons Theory

We calculate the superconformal index for N = 6 Chern-Simons-matter theory with gauge group U(N)k×U(N)−k at arbitrary allowed value of the Chern-Simons level k. The calculation is based on localization of the path integral for the index. Our index counts supersymmetric gauge invariant operators containing inclusions of magnetic monopole operators, where latter operators create magnetic fluxes o...

متن کامل

Superconformal Chern - Simons - Matter Theory

We introduce an anti-symmetric metric into a 3-algebra and call it a symplectic 3-algebra. The N = 6, Sp(2N) × U(1) superconformal Chern-Simons-matter theory with SU(4) R-symmetry in three dimensions is constructed by specifying the 3-brackets in a symplectic 3-algebra.

متن کامل

Symplectic Three - Algebra and N = 6 , Sp ( 2 N ) × U ( 1 ) Superconformal Chern - Simons - Matter Theory

We introduce an anti-symmetric metric into a 3-algebra and call it a symplectic 3-algebra. The N = 6, Sp(2N) × U(1) superconformal Chern-Simons-matter theory with SU(4) R-symmetry in three dimensions is constructed by specifying the 3-brackets in a symplectic 3-algebra.

متن کامل

Superpotentials for Superconformal Chern–simons Theories from Representation Theory

These notes provide a detailed account of the universal structure of superpotentials defining a large class of superconformal Chern–Simons theories with matter, many of which appear as the low-energy descriptions of multiple M2-brane configurations. The amount of superconformal symmetry in the Chern–Simons-matter theory determines the minimum amount of global symmetry that the associated quarti...

متن کامل

Classical Hamiltonian Reduction On D ( 2 | 1 ; α ) Chern - Simons Gauge Theory and Large N = 4 Superconformal Symmetry

3d Chern-Simons gauge theory has a strong connection with 2d CFT and link invariants in knot theory. We impose some constraints on the D(2|1;α) CS theory in the similar context of the hamiltonian reduction of 2d superconformal algebras. There Hilbert states in D(2|1;α) CS theory are partly identified with characters of the large N = 4 SCFT by their transformation properties. e-mail: ishimoto@ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008